

Cross-correlation of thermal Sunyaev Zeldovich effect(Planck) and projected density field (WISE)

Ayodeji Ibitoye^{1,2,3}, Denis Tramonte^{4,2}, Yin-Zhe Ma^{1,2,4}, Wei-Ming Dai^{1,2}

- 1. School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
- 2. NAOC-UKZN Computational Astrophysics Centre (NUCAC), University of KwaZulu-Natal, Durban, 4000, South Africa
- 3. Department of Physics and Electronics, Adekunle Ajasin University, AKungba Akoko, Ondo State, Nigeria
- 4. Purple Mountain Observatory, CAS, No.8 Yuanhua Road, Qixia District, Nanjing 210034, China

MOTIVATION

With such a cross-correlation between tSZ and WISE at $z\sim0.8$, do we expect to see a major improvement in the constrain of the mass bias parameter taking the foreground component known as the cosmic infrared background into consideration on small-scales (high redshift)?

THEORY: Halo Model

We used a model that assume that all galaxies live inside halo (a basic unit of cosmology structure). This model is called the HALO MODEL [2]

We modelled our calculation (theoretical prediction) using by categorising the contribution from single halo (1-halo term) and two or more halo (called 2-halo term)

$$C_{\ell}^{XY,\text{lh}} = \int_{0}^{z_{\text{max}}} \mathrm{d}z \frac{c\chi^2}{H(z)} \int_{M_{\text{min}}}^{M_{\text{max}}} \mathrm{d}M \frac{\mathrm{d}n}{\mathrm{d}M} X_{\ell}(M, z) Y_{\ell}(M, z)$$

$$C_{\ell}^{XY,2h} = \int_{0}^{z_{max}} dz \frac{c\chi^2}{H(z)} P_m^{lin} \left(k = \frac{\ell + 1/2}{\chi(z)}, z\right)$$

$$\times \left[\int_{M_{\text{min}}}^{M_{\text{max}}} dM \frac{\mathrm{d}n}{\mathrm{d}M} b(M, z) X_{\ell}(M, z)\right]$$

$$\times \left[\int_{M_{\text{min}}}^{M_{\text{max}}} dM \frac{\mathrm{d}n}{\mathrm{d}M} b(M, z) Y_{\ell}(M, z)\right]$$

How sure are we that WISE data is good for this work?

• Lets compare our result with previous work

Observation	Quantity	Estimated Value	Reference
This Work	В	1.64 ± 0.04	Ibitoye et al. (in prep.)
tSZ+ CMB lensing	1-b	0.71 ± 0.10	Zubeldia & Challinor (2019)
tSZ+ WG lensing	1 - b	$\simeq 26.9^{+8.9}_{-4.4}$ %	Osato et al. (2019)
CMB + tSZ	1-b	0.62 ± 0.05	Salvati et al. (2019)
tSZ+ Cosmic shear	1 - b	0.73 ± 0.11	Makiya et al. (2019)
tSZ + 2MASS	B	1.54 ± 0.098	Makiya et al. (2018)
tSZ DES	B	1.71 ± 0.17	Bolliet et al. (2018)
Planck 2015 SZ + Planck 2018 CMB	1-b	0.62 ± 0.04	Planck Collaboration et al. (2018)
WL	1-b	0.76 ± 0.07	Miyatake et al. (2019)
CMB WL +X-ray	1 - b	0.70 ± 0.05	Hurier et al. (2019)
tSZ-CMB lensing	b	0.26 ± 0.07	Hurier & Angulo (2018)
CCCP	1 - b	0.76 ± 0.11	Hoekstra et al. (2015)
CMB lensing	1/(1-b)	0.99 ± 0.19	Planck Collaboration et al. (2016b)
WtG	1-b	0.688 ± 0.072	von der Linden et al. (2014)

. .. .

Can we model the contribution of galaxies in the halo to match what telescope sees?

Reference

1. John E. Carlstrom, Gilbert P. Holder, and Erik D. Reese. Cosmology with the Sunyaev-Zel'dovich Effect. Annual Review of Astronomy and Astrophysics, 40:643–680, Jan 2002

2. Eiichiro Komatsu and Tetsu Kitayama. Sunyaev-Zeldovich Fluctuations from SpatialCorrelations between Clusters of Galaxies.Astrophysical Journal Letters, 526(1):L1–L4,November 1999

Correlation coefficient matrix for auto- and cross- spectra. Along the diagobal: (Bottom) WISE auto-, (Middle) tSZ auto-,and (Top) tSZ-WISE cross

Conclusion

1. We measured a signal-to-noise ratio (how significant the results is) to 15.6 sigma confidence level detection and reached a constrain

on the mass-bias parameter: $B = 1.634 \pm 0.04$

2. Our results shows that the Planck cluster mass should be 37% lower than the true mass of cluster.

3. Our results also suggest that CIB input to tSZ-galaxy cross correlation will be an exciting work to do with upcoming survey/telescope observation.